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Precision medicine promises improved health by accounting for individual variability in genes, environment,
and lifestyle. Precision medicine will continue to transform healthcare in the coming decade as it expands in
key areas: huge cohorts, artificial intelligence (AI), routine clinical genomics, phenomics and environment,
and returning value across diverse populations.
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Ever since the completion of the first hu-

man genome sequence in 2003, clinicians

haveanticipatedadata-driven transforma-

tion in healthcare. New troves ofmolecular

andphenotypic interrogationwould lead to

refined diagnoses, more rational treat-

ment, and prevention of disease. In 2011,

an ad hoc committee at the National

Research Council argued for a ‘‘new tax-

onomy of human diseases’’ based on the

emerging field of precision medicine (US

National Research Council, 2011).

Today, some of that promise has

already been realized. Researchers are

routinely using healthcare data for discov-

ery, identifying genomic underpinnings of

cancer and many other common and

rare diseases, introducing transformative

molecularly targeted therapies, and

leveraging massive computational capa-

bilities with new machine learning

methods. We are beginning to see the

fruits of these efforts.

There is perhaps no more poignant

example than the response to the

COVID-19 pandemic. Genomics and mo-

lecular technologies were key in identi-

fying the etiologic agent, developing diag-

nostics and treatments, and creating

vaccine candidates. Rapid case reporting

quickly exposed vast health disparities

with COVID-19 and highlighted the impor-

tance of capturing a more detailed under-

standing of social determinants of health.

Large-scale consortia based on health-

care data quickly assembled huge data-

sets for rapid investigations of risk factors

and outcomes, demonstrating the power

of amalgamated healthcare data. Pooling
data from existing research cohorts

enabled rapid genomic studies that have

identified loci associated with disease

susceptibility and patient outcomes.

COVID-19 has also called attention to

the need for longitudinal cohorts to iden-

tify clinical and biologic risk factors and

long-term sequelae for acute infectious

disease. Many of the elements of the

response to COVID-19 are basic capabil-

ities underpinning precision medicine.

At the same time, COVID-19 has high-

lighted the need for precision medicine

to move further and faster. In this paper,

we suggest seven opportunities to accel-

erate an equitable realization of the prom-

ise of precision medicine (Figure 1). Their

impacts are outlined in Table 1.

Huge, interoperable, longitudinal
cohorts
Over the last two decades, national co-

horts such as the UK Biobank, the Million

Veteran Program, FinnGen, and the All of

Us Research Program have amassed

huge populations with genomic, labora-

tory, and lifestyle assessments as well

as longitudinal follow-up on health out-

comes. The depth and breadth of the

data are staggering, as are the opportu-

nities for discovery across every area of

medicine.

In order to maximize the impact of

these resources, an ‘‘open science’’

approach is emerging. For example, the

UK Biobank has opened its doors to

more than 19,000 ‘‘bona fide re-

searchers’’ from 80 countries, and re-

searchers can start using the All of Us
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Research Program’s data cloud in as little

as two hours after initial login.

The next step is clear: make it easier for

researchers to merge data from multiple

cohorts. Currently, this requires pains-

taking manual phenotype adjudication

and building large consortia including ex-

perts from each cohort. Fortunately, there

are efforts underway to improve this pro-

cess. Groups such as the Global Alliance

for Genomics and Health (GA4GH) are

working to develop and to coordinate

common data models and file formats to

facilitate collaboration and interopera-

bility. In recognition of the need for better

collaboration, the International Hundred

Thousand Plus Cohort Consortium

(IHCC) has brought together more than

100 cohorts in 43 countries comprising

more than 50 million participants—nearly

two orders of magnitude bigger than the

biggest single cohort today (Manolio

et al., 2020). It would be hard to overstate

the impact this work could have on global

research efforts.

Improved diversity and inclusion in
science
One of the biggest challenges (and oppor-

tunities) before the biomedical enterprise

today is the lack of diversity in populations

involved in research studies. Less than

3% of the participants in published,

genome-wide association studies are of

African or Hispanic or Latin American an-

cestries, and 86% of clinical trial partici-

pants are white (Knepper and McLeod,

2018; Mills and Rahal, 2020). The lack of

diversity in research risks exacerbating
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Figure 1. Seven opportunities for precision medicine by 2030
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health disparities and also impoverishes

biologic discovery that could be appli-

cable to all populations.

With a growing depth of data, we have

an opportunity to replace adjustments

for race and ethnicity with more specific

measures. In particular, ‘‘race’’ conflates

a plethora of social, cultural, political,

geographic, and biologic factors together

and can perpetuate systemic racism.

Routine collection of social determinants

of health in both research and clinical

care in combination with more precise

measures of environmental influences,

habits, and genetic ancestry can provide

more rational, etiology-based adjust-

ments and yield better risk stratifications

and treatments (Wilkins et al., 2020).

As wework toward increasing the diver-

sity of populations in studies, we should

also increase the diversity of the biomed-

ical research workforce. A more diverse

workforce—in culture, ancestry, beliefs,

scientific backgrounds, and methodolog-

ical approaches—brings increased under-
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standing, innovation, trust, and cultural

sensitivity; is more likely to pursue ques-

tions relevant to different audiences; and

ultimately delivers better research (Hofstra

et al., 2020).

As international collaborations grow,

researchers will also need to consider

the ethics of international collaboration

and rotate leadership, authorship, and re-

sources to ensure that research benefits

developing countries as well as more

advantaged ones. Establishing interna-

tional infrastructures and science facil-

ities—not just access to samples and

data—will produce long-term benefits

that accelerate health and capabilities.

Big data and artificial intelligence
Big data and artificial intelligence (AI) are

transforming previously intractable prob-

lems such as search optimization, lan-

guage translation, image interpretation,

and autonomous driving. Many accrued

biomedical data sets meet all ‘‘5 V’s’’ of

big data since they are voluminous, high
velocity, come in many varieties, have sig-

nificant variability, and have intrinsic value.

However, AI approaches in medicine have

been limited by the (un)availability of large,

commonly structured datasets.

Looking forward, biomedical datasets

will become increasingly ready for ana-

lyses. As we discuss in the following sec-

tions, the growth of clinical data (including

image, narrative, and real-timemonitoring

data), molecular technologies (genomics

principal among them), and the availability

of devices and wearables to provide high-

resolution data streams will dramatically

expand the availability of detailed pheno-

type and environmental data not previ-

ously available at this scale. Applications

of machine learning approaches could

result in new taxonomies of disease

through genomic, phenomic, and envi-

ronmental predictors.

Routine clinical genomics to guide
prevention, diagnosis, and therapy
Today, clinical genomic analysis is typi-

cally performed only when evaluating

certain cancers or when a rare genetic

disease is suspected, and many

commonly ordered tests only evaluate a

few genetic loci. Moving forward, whole-

genome approaches will become a

routine, early step in the understanding,

prevention, detection, and treatment of

common and rare diseases.

Rare diseases will increasingly be diag-

nosed using genomic investigation as a

cheaper and more efficient alternative

to targeted approaches. Early genome

sequencing can solve diagnostic di-

lemmas and uncover ‘‘hidden’’ Mende-

lian diseases such as unexplained kidney

disease, atypical diabetes, or unex-

plained development delay (Turro et al.,

2020). Some of these Mendelian dis-

eases point to specific new treatments

and screening strategies that could

dramatically improve health, such as sul-

fonylureas for young diabetic patients

with HNF1A mutations or specific causes

of liver or kidney failure.

The last decade has also shown that

many common conditions, such as dia-

betes or hypertension, can be associated

with genetic risks at thousands of loci,

often found using huge genetic studies

aggregating data across hundreds of

thousands of participants. While many of

these genetic loci may have very small



Table 1. Envisioning how precision medicine will affect clinical medicine and research in the next decade

Where we are today Where we will be in 2030

Clinical applications

Genomics for disease Primarily limited to rare

disease and select cancers.

Genomics is routine. Genetic causes and targeted

therapies are discovered for many ‘‘common’’ diseases.

Microbiome measures are routinely included.

Pharmacogenomics (PGx) Common in cancer and within select

applications of older medications at

select sites.

Genome-aware EHRs make PGx easy and automatically

update rules from central guidelines. New PGx

associations discovered from clinical data.

Genomics for healthy individuals In research, whole-genome

sequencing and search for

mutations in one of the

ACMG59 genes, present in

about 3% of people. Variant

interpretation is hard.

ACMG59 grows to > 200, variant interpretation improved

by huge, diverse sequenced populations.

Cell-free DNA becomes a mainstay of cancer screening

EHRs Episodic capture from healthcare

without robust genomics support.

EHR data is essentially not portable.

Genome- and device- enabled. Data can be easily moved

between EHRs and to participant apps.

Environmental influences on health Patient-reported habits and

exposures

Geocode-based exposure linkage

Real time monitoring of multiple environmental exposures

Precision nutrition

Wearable sensors Ad hoc use of activity monitors Continuous monitoring of physical activity, sleep,

metabolic parameters

Research applications

Population demographics >80% European ancestry >50% non-European ancestry

Routinely available data Surveys of health conditions, lifestyle,

behavior, and diet. GWAS data, lab

assays, structured EHR data, and

geocoded exposure linkages.

Whole genomes, lab assays, surveys, full EHRs,

environmental, genomic and sensor data. Includes

imaging, narrative, geocoded, and continuous monitoring

approaches to clinical care, activity, precision nutrition,

and environment.

Size of cohorts used in analysis Up to 500K, data downloaded and

manually harmonized to sets of

several million

>100M using cloud-based federated analyses facilitated

by common standards

Largest genomic studies

performed on a trait

>1M (GWAS) >50M (GWAS)

>2M (WGS)

Cost of a whole genome $500 $20*
*Sequencing costs have often fallen faster than Moore’s law. Using Moore’s law, sequencing costs would be 1/32 of US $500, or $15.63.
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genetic effect sizes (with odds ratios <

1.01), they point to pathways involved in

disease pathogenesis that may have sig-

nificant therapeutic implications. Further-

more, weighted aggregations of genetic

variants into polygenic risk scores can

achieve similar predictive as rare Mende-

lian disease variants (Khera et al., 2018).

Moreover, use of polygenic risk scores

may allow providers to risk-stratify indi-

viduals who would otherwise be missed

by traditional screening approaches,

thereby identifying new populations for

treatment or screening.

We anticipate that diverse genetic

causes and targeted therapies will be un-

covered for many common diseases,

which could lead to more specific treat-

ment and prevention for the patient
and family members. We will likely also

discover that many genetic diseases

occur on a spectrum of severity, pene-

trance, and expressivity, guided by the

severity of different genetic variants, life-

style, and environmental interactions.

This concept is captured by the scientific

agenda of the International Common Dis-

ease Alliance. Classic examples include

different classes of CFTR mutations with

cystic fibrosis or SERPINA1 variants with

alpha-1 antitrypsin deficiency, both of

which can present with different manifes-

tations and at varying ages given the

genetic variant, habits (e.g., smoking),

and exposures (e.g., hepatitis virus co-

infections).

Routine use of sequencing will produce

valuable datasets for secondary research,
driving a more comprehensive under-

standing of disease penetrance, variant

pathogenicity, and factors influencing

variable expressivity of given genetic var-

iants. It will also produce more patients

for whom incidental pathogenic variants

are discovered. The American College

of Medical Genetics and Genomics has

identified 59 genes for which incidental

findings should be considered for patient

return (i.e., the ‘‘ACMG59’’) (Kalia et al.,

2017). These genes include hereditary

cancer syndromes, cardiomyopathies,

and potentially fatal arrhythmias, for

which actions can be taken to mitigate

their risk. Today, about 3% of patients

harbor pathogenic variants, the vast ma-

jority of which were previously unknown

to the patient. As genomic knowledge
Cell 184, March 18, 2021 1417
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increases, the number of actionable

genes and the fraction of the population

affected will significantly increase.

Furthermore, pharmacogenomics can

improve drug efficacy, reduce adverse

events, and reduce cost. In a 2009 inter-

view, one of the authors of this article

(F.S.C.) made the comment, ‘‘if every-

body’s DNA sequence is already in their

medical record and it is simply a click of

the mouse to find out all the information

you need, then there is going to be a

much lower barrier to beginning to incor-

porate that information into drug prescrib-

ing’’ (Collins, 2009). Over a decade later,

we still have a long way to go. While geno-

mics-guided therapies are becoming the

standard of care for some cancers, use

of germline pharmacovariants to guide

prescribing has been adopted by only a

few US medical centers. Implementation

has been hindered by a lack of ‘‘geno-

mics-enabled’’ electronic health records

(EHRs), the complexity of the genetics

and recommendations, and a lack of clear

evidence. Synthesized evidence and rec-

ommendations from the Clinical Pharma-

cogenomics Implementation Consortium,

ubiquity of EHRs supporting complex de-

cision support, and common data stan-

dards offer promise to accelerate adop-

tion. Some countries have substantially

reduced drug-induced Stevens Johnson

Syndrome using genetic testing (White

et al., 2018). Even considering just

five drug-genomic interactions, nearly

everyone has a pharmacovariant that

would affect drug prescribing (Van Driest

et al., 2014).

EHRs as a source for phenomic and
genomic research
The key to any longitudinal cohort is

detailed phenotype, exposure, and health

outcome assessment. Many site-based

and national research cohorts now use

EHRs and other health data to provide

up to decades of extant disease and treat-

ment information that can be repurposed

for research, and we only see this use ex-

panding.

Already EHR-based studies have been

instrumental to some of the largest

genomic studies of clinically relevant find-

ings, some of which are exceeding 1

million individuals (Vujkovic et al., 2020).

By providing a systematic collection of

health-related information, EHRs provide
1418 Cell 184, March 18, 2021
phenotypes and data and enable novel

study designs often not available in

research collections. For example, one

study demonstrated participants had an

average of more than 190 clinical notes,

14 radiological studies, and more than

700 lab tests over an average of about 8

years of follow up (Robinson et al.,

2018). The power to discover specific en-

dophenotypes (e.g., cardiac ejection frac-

tion) or emerging phenotypes (e.g.,

COVID-19), rare and specific phenotypes

(e.g., osteonecrosis of the jaw), or to un-

derstand specific manifestations of dis-

ease (e.g., bronchiectasis) often requires

access to complete EHR data.

EHR data require cleaning and harmo-

nization and can reflect clinical and insur-

ance biases. Unstructured EHR data,

such as narrative reports or imaging

data, often require advanced methods

like natural language processing or ma-

chine learning to be useful on a population

scale. However, all of these tools are

increasingly available and applicable,

providing access to data on a scale,

depth, and detail not feasible with purely

research-collected data.

Clinical EHRdata can also be combined

with participant-provided research data

collections to provide a more complete

picture of patient outcomes. Research co-

horts such as theUKBiobank andAll of Us

have integrated both data sources.

Further, as clinical sequencing grows,

the number of genotypes derived from

clinical care will rapidly grow to dwarf

those available from research use cases.

Many genomic studies may no longer

need separate research biospecimen

collection to perform large-scale genetic

studies. Collection of research bio-

specimens could then shift toward

measuring other biomarkers, cell-free

DNA, exposures, and epigenomics.

Higher variety, higher resolution
phenomics and environmental
exposure data for both clinical and
research use
The next decade will see the continued

growth of research and clinical uses for

different ways to measure clinical pheno-

types, exposures, and lifestyle. Data link-

ages to health claims, national vital

statistics, and geospatial resources will

become more common as will the use of

wearable devices to measure activity,
physical measurements, and exposures.

Surveys can then be more focused on el-

ements not covered by other methods,

thereby decreasing participant burden.

Activity monitors that take a number of

clinical measurements such as single-

lead electrocardiograms and oxygen

saturation are becoming inexpensive

and can be easily shared with providers.

Since the vast majority of a patient’s life

is spent outside the healthcare system,

integration of wearable devices and

other patient-provided information would

augment the EHR and enable greater tele-

health capabilities, experienced first at

scale during COVID-19. Moreover, inte-

gration of these tools could produce

a shift in which most health-related data

is derived outside of the healthcare

setting.

Despite clear evidence of the impact of

nutrition on health, diet is an environ-

mental exposure often ignored in much

of clinical practice and many research

studies. When it is assessed, it is often

through episodic and cumbersome sur-

veys (research) or perfunctory summative

questions (in most clinical settings). Re-

placing dietary assessment with data link-

ages to grocery stores, digital uploads

from restaurants, laboratory and micro-

biome assessments, or machine learning

applied to food imaging would provide

more feasible, comprehensive capture of

dietary habits. A future of precision nutri-

tion, as a type of ‘‘drug,’’ offers a powerful

new modality for treating and preventing

disease (Rodgers and Collins, 2020).

Privacy, participant trust, and
returning value
The utility of precision medicine is depen-

dent on broad participation, and broad

participation of large populations requires

trust, protection of privacy, and a return of

value to the participants. We recognize

that science has not always been trust-

worthy or honored all participants equally.

Transparency, authentic engagement

with communities, and including partici-

pants within research governance can

improve trust, create participant advo-

cates, and ensure a more thoughtful,

culturally sensitive direction. All of Us

has involved participants in all levels

of governance from the beginning and

seeks to return value by giving partici-

pants generated research data wherever
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possible, such as genomics results or up-

coming COVID-19 serology results.

Participants also need to trust that their

data is secure and private. Highly public

data breaches, fear of reidentification,

and legal concerns about the availability

of certain types of information for factors

such as insurability can make this chal-

lenging. Clear and honest communication

with participants is essential in building

trust. Legal protections for the data

and technological approaches to ensure

secure information systems (such as dei-

dentifying and blurring data, controlling

access via blockchain, linking data using

privacy-preserving hashed identifiers,

and analyzing data using homomorphic

encryption) also play a role.

Conclusion
The technologies undergirding precision

medicine are already transforming care.

Transformative molecular treatments

have been developed for rare diseases

like cystic fibrosis and spinal muscular

atrophy. Genomic investigation led to

the development of new drugs for hyper-

lipidemia. In this time of COVID-19, sci-

ence has been the answer to an existen-

tial medical threat. Yet we are reminded

that many of the benefits of medicine’s

advancement have not always been

available to all. Biomedical approaches,

computation algorithms, and the avail-

ability of high-resolution data will dramat-

ically increase over the next decade.

Implementation of a bold plan to collabo-

rate internationally, to engage diverse

populations of participants and scientists,

to deeply measure our populations, to
make clinical and research data broadly

available, and to implement this knowl-

edge in clinical practice—in a true

learning healthcare system—will allow us

to achieve the vision of precision medi-

cine for all populations.
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